On top of the page 143 Instead
Remark. In particular, for $p=1$ we obtain well known asymptotic equivalence for hyperfactorial $H(n)$, namely $H(n)=H_{1}(n) \sim e^{-\frac{n}{4}} n^{\frac{n+1}{2}}$ [1].
must be
Remark. In particular, for $p=1$ we obtain well known asymptotic equivalence related to hyperfactorial $H(n)$, namely $\sqrt[n]{H(n)}=\sqrt[n]{H_{1}(n)} \sim e^{-\frac{n}{4}} n^{\frac{n+1}{2}}$ [1].

